1- Recall the Lagrangian you used to derive geodesic equations. Show that $\mathcal L$ is constant along any geodesics. i.e. that

$$
\frac{d}{d\tau}(g_{\mu\nu}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau})=0
$$

for $x^{\mu}(\tau)$ a solution of the geodesic equation. What is the symmetry that by Noether's theorem, gives rise to this constant of motion?

2 -The covariant derivatives of a covector field A_μ and a $(0, 2)$ tensor $B_{\mu\nu}$ field are:

$$
\nabla_{\mu} A_{\nu} = \partial_{\mu} A_{\nu} - \Gamma^{\lambda}_{\mu\nu} A_{\lambda} \n\nabla_{\lambda} B_{\mu\nu} = \partial_{\lambda} B_{\mu\nu} - \Gamma^{\rho}_{\lambda\mu} B_{\rho\nu} - \Gamma^{\rho}_{\lambda\nu} B_{\mu\rho}
$$
\n(1)

(a) Show that, even though $\partial_\mu A_\nu$ is not a tensor (which is why the Γ-term is required in $\nabla_\mu A_\nu$), the curl (or rotation) $\partial_\mu A_\nu - \partial_\nu A_\mu$ is a tensor, then show that the covariant curl of a covector is equal to its ordinary curl,

$$
\nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}
$$

This provides an alternative argument for the fact that $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is a tensor. (b) Show that the covariant derivative of the metric is zero, $\nabla_{\lambda} g_{\mu\nu} = 0$.

3- Establish

$$
\Gamma^{\prime \mu}_{\alpha\beta} = \frac{\partial x^{\prime \mu}}{\partial x^{\nu}} \frac{\partial x^{\sigma}}{\partial x^{\prime \alpha}} \frac{\partial x^{\rho}}{\partial x^{\prime \beta}} \Gamma^{\nu}_{\sigma\rho} - \frac{\partial x^{\nu}}{\partial x^{\prime \alpha}} \frac{\partial x^{\sigma}}{\partial x^{\prime \beta}} \frac{\partial^2 x^{\prime \mu}}{\partial x^{\nu} \partial x^{\sigma}}
$$
(2)

by assuming that the quantity defined by

$$
\nabla_{\mu}A^{\alpha} = \partial_{\mu}A^{\alpha} + \Gamma^{\alpha}_{\nu\mu}A^{\nu}
$$
\n(3)

has the tensor character indicated. Take the partial derivative of

$$
\delta^{\prime \alpha}_{\mu} = \frac{\partial x^{\prime \alpha}}{\partial x^{\prime \mu}} = \frac{\partial x^{\prime \alpha}}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial x^{\prime \mu}}
$$

with respect to $x^{\prime\nu}$ to establish the alternative form:

$$
\Gamma^{\prime \mu}_{\alpha \beta} = \frac{\partial x^{\prime \mu}}{\partial x^{\nu}} \frac{\partial x^{\sigma}}{\partial x^{\prime \alpha}} \frac{\partial x^{\rho}}{\partial x^{\prime \beta}} \Gamma^{\nu}_{\sigma \rho} + \frac{\partial x^{\prime \mu}}{\partial x^{\nu}} \frac{\partial^2 x^{\nu}}{\partial x^{\prime \alpha} \partial x^{\prime \beta}} \tag{4}
$$

[2](#page-0-0) and [4](#page-0-1) are equivalent.

4- [d'inverno 6.5] assuming [3](#page-0-2) and $\nabla_{\alpha} \phi = \partial_{\alpha} \phi$ apply the Leibniz rule to covariant derivative of $A_{\mu}A^{\mu}$, where A^{μ} is arbitrary to verif[y1.](#page-0-3)

5- [Carroll 3.5] Consider a 2-Sphere with coordinates (θ, ϕ) and metric:

$$
ds^2 = d\theta^2 + \sin^2 \theta d\phi^2
$$

Show that the line of constant longitude (ϕ = constant) are geodesics, and that the only line of constant latitude (θ = constant) that is a geodesic is the equator ($\theta = \pi/2$).