1 - (a) Consider a static observer (sitting at fixed values of $(r > 2m, \theta, \phi)$) in the Schwarzschild geometry

$$
ds^2=-(1-\frac{2m}{r})dt^2+(1-\frac{2m}{r})^{-1}dr^2+r^2(d\theta^2+\sin^2\theta d\phi^2)
$$

Determine his worldline 4-velocity $u^{\alpha} = dx^{\alpha}/d\tau$ and the covariant (tensorial, specifically vectorial) acceleration $a^{\alpha} = \dot{u}^{\alpha} + \Gamma^{\alpha}_{\beta\gamma}u^{\beta}u^{\gamma}$ and calculate $g_{\alpha\beta}a^{\alpha}a^{\beta}$.

(b) Consider a freely (and radially) falling observer in the Schwarzschild geometry, initially at rest at radius $r(\tau = 0) \equiv R > 2m$. Show that the proper time it would (formally) take him to reach $r = 0$ is (up to factors of c) given by

$$
\tau=\pi(\frac{R^3}{8m})^{1/2}
$$

This can be interpreted as an estimate for the time of complete collapse of a star under its own gravitational attraction.

2- In part (a) you determined the acceleration of a static observer in Schwarzschild (SS) coordinates. The acceleration vector a^{α} appeared to be non-singular in these coordinates. This is misleading, however its norm (a scalar) turned out to be singular as $r \to 2m$ because the relevant component $g_{rr} = f(r)^{-1}$ is singular there.

Now we want to see what happens in simplest coordinates in which metric is non-singular at $r = 2m$, namely in Eddington-Finkelstein (EF) coordinates,

$$
ds^2 = -f(r)dv^2 + 2dvdr + r^2d\Omega^2
$$

(a) Calculate $a^{\alpha} = \dot{u}^{\alpha} + \Gamma^{\alpha}_{\beta\gamma} u^{\beta} u^{\gamma}$ for a static observer in EF coordinates.

(b) Alternatively, determine a^{α} in EF coordinates simply from the result in SS coordinates by using the coordinate transformation. (c) Determine the norm $g_{\alpha\beta}a^{\alpha}a^{\beta}$ in EF coordinates, and show that the result is equal to that obtained previously in SS coordinates.

3 - [d'inverno 16.3] What is the character of the coordinates of (a) (t, ρ, z, ϕ) in

$$
ds^2 = \rho^{-2m} dt^2 - \rho^{-2m} \big[\rho^{2m^2} (d\rho^2 + dz^2) + \rho^2 d\phi^2 \big]
$$

(b) (u, r, x, y) in

$$
ds^{2} = x^{2}du^{2} - 2du dr + 4rx^{-1}dudx - r^{2}dx^{2} - x^{2}dy^{2}
$$